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Abstract 
Motivation: Joint reconstruction of multiple gene regulatory networks (GRNs) using gene expression 
data from multiple tissues/conditions is very important for understanding common and tissue/condition-
specific regulation. However, there are currently no computational models and methods available for 
directly constructing such multiple GRNs that not only share some common hub genes but also pos-
sess tissue/condition-specific regulatory edges.   
Results: In this paper, we proposed a new graphic Gaussian model for joint reconstruction of multiple 
gene regulatory networks (JRmGRN), which highlighted hub genes, using gene expression data from 
several tissues/conditions. Under the framework of Gaussian graphical model, JRmGRN method con-
structs the GRNs through maximizing a penalized log likelihood function. We formulated it as a convex 
optimization problem, and then solved it with an alternating direction method of multipliers (ADMM) 
algorithm. The performance of JRmGRN was first evaluated with synthetic data and the results showed 
that JRmGRN outperformed several other methods for reconstruction of GRNs. We also applied our 
method to real Arabidopsis thaliana RNA-seq data from two light regime conditions in comparison with 
other methods, and both common hub genes and some conditions-specific hub genes were identified 
with higher accuracy and precision. 
Availability: JRmGRN is available as a R program from: https://github.com/wenpingd. 
Contact: hairong@mtu.edu  
Supplementary information: Proof of theorem, derivation of algorithm and supplementary data are 
available at Bioinformatics online. 

 

1   Introduction 
Though all cells in a multicellular organism carry out some common pro-
cesses that are essential for survival, different tissues can exhibit some 

unique patterns in gene expression that helps define their phenotypes.  In 
addition, some organisms like plants may experience various environmen-
tal conditions in particular stresses. These common and tissue/condition-
specific processes are ultimately controlled by GRNs that contain both 
common and tissue/condition-specific hubs. These hubs play critical roles 
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for organisms to complete their life cycle.  For example, abiotic and biotic 
stresses -responsive genes in rice have 70% in common and these genes 
showed conserved expression status, and the majority of the rest were 
down-regulated in abiotic stresses and up-regulated in biotic stresses 
(Shaik and Ramakrishna 2014), indicating the presence of common hubs 
and network  between two conditions. The local GRNs for different envi-
ronmental conditions have been built in Arabidopsis (Hickman et al. 2013; 
Barah et al. 2016). Tissue-specific genes  for 38 tissues have been identi-
fied in humans and the GRNs for each of these 38 tissues in humans have 
been built (Sonawane et al. 2017) and analyzed.   
Comparison of global GRNs (Boyle et al. 2014) have revealed that the 
GNRs are largely conserved and share remarkable commonalities though 
they can change in response to environmental stimuli or at different tissue 
types. The high similarity in GRNs is primarily caused by the relatively 
smaller number of tissue/condition-specific nodes, For example, 23.4% 
genes were indicated to be tissue-specific (with complicity equal to one) 
after studying multiple tissues of humans (Sonawane et al. 2017).  How-
ever, some local GRNs may be subject to some local topology changes 
(Faisal and Milenkovic 2014; Martin et al. 2016), making some regulatory 
interactions exist in all tissues or conditions while some others exist only 
in specific tissue or specific treatment.  
Therefore, identification of both common and tissue- or condition-specific 
gene regulation provides key insights into complex biological systems 
(Tian, et al., 2016). In the past two decades, advances in microarray and 
RNA-seq technology have led to the generation of enormous wealth of 
gene expression data across various cell/tissue types and conditions. Alt-
hough these data sets provide valuable opportunity to more robustly re-
construct condition-specific GRNs, there are very limited methods for 
modeling the complicated GRNs with high accuracy. Advanced and 
highly efficient methods are still in great demand.   
Gaussian graphical models (GGMs) are widely used to reconstruct gene 
networks using gene expression data (Kumari, et al., 2016). The models 
assume that gene expression data on p	  genes from each sample follows a 
multivariate normal distribution with mean µμ and covariance matrix Σ, 
where µμ is a vector with p elements and Σ	  is a p×p positive definite ma-
trix. The conditional independence of two genes given other genes corre-
sponds to a zero entry in the inverse covariance matrix Σ&' (also called 
the precision or concentration matrix) (Lauritzen, 1996). Usually, we set 
Θ =Σ&' , called precision matrix or concentration matrix. Gaussian 
graphical models have the advantage of reconstructing direct dependen-
cies between genes that represent edges in the reconstructed network: an 
edge corresponds a non-zero entry in Σ&'. A natural way to estimate Σ&'is 
by maximizing the log-likelihood of the data, which result in an estimation 
of precision matrix Θ = S&' where S is the sample covariance matrix. 
However, directly applying GGM to reconstruct GRN is not applicable 
due to two problems. First, since the number of samples (n) is generally 
much less than the number of genes (p) from gene expression data, the 
sample covariance matrix 𝑆 becomes singular and thus it is impossible to 
computing the inverse. Second, even if the sample covariance matrix is 
not singular, the elements in the estimated precision matrix Θ are in gen-
eral not exactly equal to zero. For these reasons, Yuan and Lin (Lin, et al., 
2007) proposed to maximize a L1  regularized log-likelihood function. 
Similar to LASSO regression (Tibshirani, 1996), they put a penalization 
on the sum of absolute value of each element in precision matrix, which 
leads to a sparse and positive definite estimation of Θ.	  GLASSO (Fried-
man, et al., 2008) is a fast algorithm to solve this optimization problem. 
When applying GGMs to reconstruct gene regulatory networks, the un-
derlying assumption is that each observation is drawn from the same dis-
tribution. However, when the gene expression data come from different 
tissues or under different treatments, this assumption is inappropriate. In 

this case, if one insists on modeling the gene expression data by one GRN, 
the results would be dubious and we cannot obtain the differential network 
e are interested in. A straightforward method to obtain the differential net-
work is to reconstruct the network of each condition separately and then 
find the difference between them. However, this procedure ignores the 
similarity shared between GRNs across different tissues/treatments, which 
is critically important to reconstruct the GRNs, especially when the sam-
ple size is small. To reconstruct these dependent GRNs, Guo et al. (Guo, 
et al., 2011) proposed a joint penalized model using a hierarchical penalty 
and derived the convergence rate and sparsity properties of the resulting 
estimators. Danaher et al. (Danaher, et al., 2014) proposed a joint graph-
ical lasso model (JGL) to estimate multiple GRNs simultaneously. They 
proposed a fused graphical lasso penalization and a group graphical lasso 
penalization in addition to the sparsity penalization. In fused graphical 
lasso, the corresponding elements in the precision matrices are encouraged 
to have the same values. In group graphical lasso, the precision matrices 
in different conditions are encouraged to have similar sparsity pattern.  
The above-mentioned methods do not impose any structural information 
of gene networks. That is, each gene has approximately the same number 
of interactions within the network, and each pair of nodes has equal prob-
ability to be an edge and all edges are independent.  However, recent evi-
dence points to scale-free properties in biological networks (Han, et al., 
2004; van den Heuvel and Sporns, 2013), in which most genes interact 
with a few partners whereas a small proportion of genes, called hub genes, 
are densely-connected to many other genes (high connectivity). To incor-
porate hub genes in GRNs, Liu and Ihler (Liu and Ihler, 2011) replaced 
the l1 regularization in GLASSO with a power law regularization and op-
timized the objective function by solving a sequence of iteratively re-
weighted l1 regularization problems, where the regularization coefficients 
of nodes with high degree were reduced, which encouraged the appear-
ance of hub genes. Tan et al. (Tan, et al., 2014) introduced a row-column 
overlap norm penalty to incorporate hub genes explicitly. In their model, 
called hub graphical lasso (HGLASSO), the precision matrix Θ was de-
composed into two parts, one is elementary matrix Z, the other is hub ma-
trix V, where Z is a symmetric matrix that is encouraged to be sparse, V is 
a matrix whose columns are encouraged to be either entirely zero or almost 
entirely non-zero through the l1/lq norm penalization. The non-zero col-
umns of V correspond to hub genes. A detailed description of existing 
GGM related methods (GLASSO, JGL and HGLASSO) are given in Sup-
plementary File 1 (S1). 
The aim of this research is to develop new and more accurate method for: 
(1) construction of GRNs containing the important common hubs that may 
play essential roles for survival and/or adaptation; (2) construction of 
GRNs containing tissue/condition-specific regulatory relationships that  

Figure 1. A toy example of two gene regulatory networks from two tissues or environ-

mental conditions. Gene 10 and 12 are common hub genes in both networks. There are 

some edges (dash green) shared by the two networks and some edges (solid red or solid 

blue) belonging only to one network. 
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help us to understand phenotypes/traits of interest.  In this manuscript, we 
assumed that a network for a specific tissue/condition can be decomposed 
into an elementary network that is unique to the tissue/condition, and a 
common network centered on hub genes that is shared across multiple tis-
sues/conditions. Based on this hypothesis, we proposed a new method to 
jointly reconstruct multiple GRNs for multiple tissues/conditions in just 
one effort.  Our method, JRmGRN, is different from the aforementioned 
methods. The methods from Yuan and Lin (Lin, et al., 2007), Danaher et 
al. (Danaher, et al., 2014) cannot model hub genes. Although the methods 
from Liu and Ihler (Liu and Ihler, 2011) and Tan et al. (Tan, et al., 2014) 
can be used to model hub genes, their methods are dedicated to reconstruc-
tion of a gene network from each data set independently. With the availa-
bility of enormous amount of gene expression data from multiple tis-
sues/conditions in public repositories, it is important to use data sets from 
multiple tissues or conditions together to identify common hub genes 
across multiple tissues or conditions and some tissue- or condition-spe-
cific hub genes, which will advance our understanding on regulation of 
biological processes and pathways. Our method hypothesizes that there 
are common hub genes in different tissues or under different environmen-
tal conditions. Figure 1 illustrates two example networks obtained from 
two tissues or conditions. There are many common edges (dash green) 
between two networks and some tissue- or condition-specific edges be-
longing to only one of the two networks (e.g. solid red and solid blue). 

2   Methods 

2.1   Gaussian graphical model and regularization 
Suppose that there are K datasets, 	  Y('), … , Y(:), where K ≥ 2, to represent 
gene express data from K tissues or conditions. Y(=) is a n=×p  matrix 
where n= is the number of samples and p is the number of genes in the kth 
data set. Additionally we assume that the rows of Y(=)are independent and 
each row of Y(=)~N(µμ=, Σ=)(k = 1,⋯ , K) . Denote S(=) = '

BC
Y = −

µμ=
E(Y = − µμ=) as the sample covariance matrix of Y(=) . The precision 

matrix, Θ = is the inverse matrix of the covariance matrix Σ=. For a gene 
regulatory network, the non-zero element θGH

(=)(i ≠ j) in Θ k  indicate there 
is a conditional correlation between gene i and j for the kth tissue/condi-
tion. Since the number of genes, p, is large and only a small portion of 
genes are associated, most of elements in Θ =  are expected to be zero. In 
addition, a few (hub) genes are expected to be associated with many other 
genes for different tissues or conditions, so the precision matrix  Θ =  can 
be decomposed into two parts: one represents the elementary network for 
the kth tissue/condition and the other part represents the network for hub 
genes. Based on such sparsity and decomposition of Θ = , we propose the 
joint reconstruction of multiple gene regulatory networks with common 
hubs (JRmGRN) by solving the following penalized log-likelihood func-
tion,  

argmin P C ∈𝒮S,
=T',..,:

{ −n=

:

=T'

log	  (det(Θ = )) − trace S = Θ =

+P({Θ})}

P Θ = λ' Z = − diag Z =
'

:

=T'

+

λ` Z = − Z =a

'
=b=a

+ λc V
'
+ λd V

',`

	   2.1  

where Z(=) + V + Ve = θ(=)  for	  k = 1, … , K and 𝒮f  as the collection of 
symmetric positive semidefinite matrix. In the above penalized function. 
||V||' = |vGH|GH  denotes the sum of the absolute value of each element in 
V . 	  	  ||V||',` = ||VH||`

i
HT'  where VH  is the jjk  column of matrix V . So 

||V||',` denotes the sum of the l2 norm of each column in V.  In (2.1), the 
first part is the log-likelihood function of the data based on the precision 
matrix and the second part is the penalized function with l1 norm to help 
us model the sparsity of Θ = . We decompose the precision matrix Θ =  
under the kth tissue/condition into two parts: Z =  and V. Z =  can be seen 
as the elementary network under the kth tissue/condition. V represents 
common hub genes across all tissues/conditions. We used four items in 
the penalized log-likelihood function P Θ  to ensure the reconstructed 
networks satisfied the desired properties. We summarized the purpose and 
the prior assumption of the four penalties in following: 
1)   λ' Z = − diag Z =

'
:
=T' . The prior assumption is that elemen-

tary network under each condition is sparse, meaning that most of 
elements in Z =  is zero. Therefore, we use 𝑙1 penalty to encourage 
the off diagonal elements of Z =  to be zero. 

2)   λ` Z = − Z =a

'
=b=a . The prior assumption is that each Z =  

contains some unique edges, representing the specific network for 
the kjk tissue/condition; but {	  Z = } have many common edges due 
to similarity among networks. Therefore, we use 𝑙1 penalty to en-
courage the elementary networks across different conditions to be 
the same.  

3)   λd V
',`

. We assume matrix V contains zero columns and dense 
non-zero columns, where the non-zero columns represent the com-
mon hub genes across all tissues/conditions. Therefore, we use group 
lasso penalty to force some columns of V to be zero columns. 

4)   λc V
'
. For the non-zero columns of V, we also use 𝑙1 penalty to 

encourage some elements to be zero, so a hub gene will not connect 
to all other genes. 

λ', λ`, λc, and	  λd, are non-negative tuning parameters. Note that our model 
is different from methods that use Gaussian graphical model and regular-
ization to reconstruct gene associate networks (Friedman, et al., 2008; Lin, 
et al., 2007). For example, GLASSO can only use data from single tissue 
or condition and cannot model hub genes (Friedman, et al., 2008). JGL 
can use data from multiple tissues or conditions but cannot model hub 
genes (Danaher, et al., 2014). HGLASSO incorporates hub genes in the 
reconstruction of gene networks but only handles data from a single tissue 
or condition (Tan, et al., 2014). Although we may reconstruct gene net-
works for each tissue or condition using GLASSO/JGL/HGLASSO then 
use reconstructed networks to identify common hub genes, such approach 
is subjective and less efficient. In contrast, our proposed method is to re-
construct gene networks with hub genes by jointly using data sets from 
multiple tissues/conditions, thus is more efficient, powerful and accurate. 

2.2   Algorithm to estimate parameters 
For fixed values of tuning parameters λ', λ`, λc, and	  λd, the expression of 
(2.1) is a convex optimization problem, which can be solved by efficient 
algorithms available. The convexity of (2.1) can be proved by the follow-
ing facts: the function of negative log determinant is a convex function, 
the norm functions are convex functions, and the nonnegative combination 
of convex functions is a convex function. We solved the problem (2.1) 
using the alternating directions method of multipliers (ADMM) algorithm, 
which allows us to decouple some of the terms in (2.1) that are difficult to 
optimize jointly.  For more details on ADMM algorithm and its conver-
gence properties, please consult the previous publication (Boyd, et al., 
2011).  
We write the expression of (2.1) as a convex minimization problem with 
two blocks of variables and two separable functions as follows: 

minϕ X + ψ X 	  	  s. t.	  	  X − X = 0	   2.3  
where X = Θ = , Z = , V , X = Θ = , Z = , V , and  
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ϕ X = f Θ = + g Z = + h V 2.4  

ψ X = I Θ = = 	  Z = + V + VE
:

=T'

2.5  

where 

f Θ = = −n=

:

=T'

logdetΘ = − trace S = Θ = 2.6  

g Z = = λ' Z = − diag Z =
'

:

=T'

+ λ` Z = − Z =a

'
=b=a

	   2.7  

h V = λc V
'
+ λd V

',`
	   2.8  

I P  is the indicator function on proposition 𝑃,  

I P = 0	  	  if	  	  P	  is	  TRUE
∞	  if	  P	  is	  FALSE  

The scaled augmented Lagrangian for (2.3) is given by 

L Θ, Z, V,W = ϕ X + ψ X +
ρ
2

X − X +W
�

`
	   2.9  

where W = ( WP
= , W�

= ,W�) is the dual variable and ρ is a parameter. 
The iteration of ADMM applied to solve (2.9) can be described as follows: 

X jf' = argmin� ϕ X +
ρ
2

X − X j + W j
�

`

	  	  X jf' = argmin� ψ X +
ρ
2

X jf' − X +W j
�

`

	  	  W jf' = W j + X jf' − X jf'

2.10  

The details for solving (2.10) are given in Supplementary File 1 (S2). As 
(2.3) is a consensus problem, its convergence can be guaranteed, more 
details on consensus problem can be found in (Ma, et al., 2013). 

2.3   Selection of tuning parameters 
As pointed out in (Bach, et al., 2012), a careful choice of the tuning pa-
rameters is much more important in this case than in the ordinary 
GLASSO since there are four tuning parameters. There are a wide variety 
of criteria to select appropriate tuning parameters. One criterion is valida-
tion set likelihood, a score that tries to assess how effective the estimator 
is at modeling new instances. However, three questions arise. First, if we 
partition the data as training set and validation set, it is inappropriate be-
cause the number of samples is very small. Secondly, if we use cross-val-
idation score, we have to train multiple models and it is very slow. Thirdly, 
as discussed in (Meinshausen and Bühlmann, 2006), the optimal parame-
ters under prediction-optimal value will in general have too many non-
zero variable. In this paper, we used a Bayesian information criterion 
(BIC)-type quantity to select tuning parameters. Recall that we factorized 
the precision matrix Θ =  into  Θ = = Z = + V + Ve, and placed a l' pen-
alty on Z = , a l' penalty on the difference of {Z = }, and a l'/l` penalty on 
V.  We then chose λ', λ`, λc, and	  λd to minimize the expression of 2.11, 
which is a tradeoff between model likelihood and model complexity.   

−n= log (det(Θ = )) + n=trace S = Θ =

:

=T'

+

log n= Z =

:

=T'

− log n ∩ Z = + log n v + c V − v

2.11  

where {Θ = , Z(=), V} is the estimated parameters with a fixed set of tuning 
parameters (λ', λ`, λc, λd). |Z(=)| is the cardinality of  Z(=), |V| is the car-
dinality of V, v is the number of estimated hubs, c is a constant between 
zero and one. BIC in its standard form consists of a sum of model likeli-
hood and log 𝑛 ∗ 𝑑/2, where 𝑛 is the number of samples and d is the 
number of free parameters. For our case, as the elements in Z(=) and V are 
inter-related, it is difficult to estimate the number of free parameters. 
Therefore, We proposed this BIC-type quantity (2.11) for selecting the set 
of tuning parameters, which is similar to the BIC quantity in (Tan, et al., 
2014). 

 
BIC is just a guide for turning parameter selection.  In reality, we may also 
consider other factors in addition to BIC. For example, network interpret-
ability, stability, and the desire for an edge set with a low false discovery 
rate, as pointed out by some researchers (Meinshausen and Bühlmann, 
2010). 
We used the grid search to find the tuning parameters that maximized the 
expression of (2.11). The computational complexity for the network con-
struction with a fixed set of tuning parameters mainly depends on the num-
ber of genes included in the analysis. The grid search is feasible when the 
number of genes falls into small to moderate ranges but quickly becomes 
impractical for large number of genes. In this situation, we need to explore 
some theoretical properties of the problem that can be used to guide our 
search of tuning parameters.  
Similar to lemma 4.1 in (Danaher, et al., 2014), the following fact exists. 
Lemma 1. Suppose that the solution to the expression of (2.1) is block 
diagonal with known blocks. That is, if the features are properly reordered 
and the estimated inverse covariance matrix takes the form 

Θ(=) =
Θ'
(=) 0
0 Θ`

(=)  

where each of Θ'
('), … , Θ'

(:)  has the same dimension, then Θ'
('), … , Θ'

(:) 
and Θ`

('), … , Θ`
(:) can be obtained by solving expression of (2.1) on just 

the corresponding set of features.  
Theorem 1.  A sufficient condition for the solution to (2.1) to be block 
diagonal with blocks given by C', C`, … , 	  Ce is that 

Min
λ'
n'
, … ,

λ'
n:
,

λc
2 n=:

=T'
≥ SGHa

= for	  all	  j ∈ Cj, jE ∈ Cja , t ≠ tE	  	   2.23  

Proof of Theorem 1 is given in Supplementary File 1 (S3.1). 
Theorem 2. Let ( Θ∗ = , Z∗ = , V∗) be a solution to (2.1), a sufficient 
condition for V∗ to be zero matrix is that 

λ' ≤
λd

2K p
+
λc
2K
	   2.24  

Proof of Theorem 2 is given in Supplementary File 1 (S3.2). 
If the conditions for Theorem 1 are satisfied, we decomposed the recon-
struction of a big network into the reconstruction of two or more small 
networks separately, thus the computational time for (2.1) could be greatly 
reduced. With Theorem 2, we could reduce the search space of parameters 
λc  and λd	  as these four tuning parameters are related. If λ'  is large and 
λc, and	  λd are too small, then the elementary network matrices Z =  can 
become very spare and the number of hub genes becomes too large. On 
the other hand, if λ' is small and  λc	  and	  λd are too large, the elementary 
network matrices Z =  can become dense, and the number of hub genes 
will become too small. In this paper, we used a uniformed grid of log space 

Figure 2.  The simulated Erdős-Rényi gene network (A) and the estimated gene net-

work (B). In both figures, the blue edges, the red edges, and the green edges represents the 

edges from Tissues1-specific edges, Tissue2-specific edges, and common edges from both 

tissues, respectively. The hub genes are highlighted in red in both Figures A and B. 
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Figure 3. Precision-Recall curve of JRmGRN and three existing methods including graphical lasso (GLASSO), joint graphical lasso (JGL), and graphical lasso with hubs (HGLASSO) for 

Erdős-Rényi-based networks

 
from 0.01 to 20 (size=30) for parameter λ', set λ` to be 0.5, 1, and 2 folds 
of λ', set λc to be 0.5, 1, 2,…	  2K folds of  λ', and set λd to be 0.1, 0.5, 1, 
2,…, λ' −

��
`:

∗ 2K p folds of λ'.  

3   Results 

3.1   Results from simulated data 
We simulated two types of gene networks, Erdős-Rényi (ER)-based net-
work (Mendes, et al., 2003) and Barabási-Albert(BA)-based network 
(Barabási and Albert, 1999), and then generated corresponding gene ex-
pression data to assess and validate the method developed. We then com-
pared our method, JRmGRN, with three GGM based methods, the graph-
ical lasso (GLASSO) (Friedman, et al., 2008), the joint graphical lasso 
(JGL) (Danaher, et al., 2014), and the graphical lasso with hubs 
(HGLASSO) (Tan, et al., 2014). The precision recall curves were con-
structed based on the edges instead of hub genes in the network since 
GLASSO and JGL do not model hub genes explicitly. 

3.1.1 Results on ER-based network 

 
In an ER-based network, each pair of nodes was selected with equal prob-
ability and connected with a predefined probability. To simulate scale-free 
ER-based networks, we adopted a similar procedure used in (Tan, et al., 
2014) with some modifications. Specifically, for a given number of tissues 
or conditions (K), genes (p), samples (n=, k = 1,⋯ , K), we used the fol-
lowing procedures to simulate ER-based network and corresponding gene 
expression data. (1) We generated a sparse p×p matrix A by setting each 
element AGH to be a random number in −0.25, −0.75 ∪ [0.25,0.75] with 
probability α  (elementary network sparsity 1 − α) and zero otherwise. 
This step is the same as the simulation procedure in (Tan, et al., 2014); (2) 
We first set the matrix H to be a p×p zero matrix, and then randomly 
chose m hub genes. For each element in the column of H that represents a 
hub gene, hGH , we set it to be a random number in −0.25, −0.75 ∪
[0.25,0.75] with probability β (hub sparsity 1-	  β ) and zero otherwise, 
then set H to (H + He)/2. (3) To construct the elementary network, Z(=), 
we first set it equal to A, and then randomly chose a fraction of δ (network  
difference) of elements and reset its value to be a random number in 
−0.25, −0.75 ∪ [0.25,0.75]  with probability α  (elementary network 

sparsity 1-	  α) and zero otherwise. We set ZGH
(=) = ZHG

(=) for each i > j so that 
Z(=) is symmetric. (4) We defined the precision matrix, Θ(=) as Z(=) + H.  
If Θ(=) was not positive definite, we added the diagonal element of Θ(=) by  

 
0.1 − λ�GB(Θ(=)), where λ�GB(Θ(=)) is the minimum eigenvalue of Θ(=). 
(5) W generated the gene expression of n= samples for the kth tissue or 
condition with n=  independent multivariate normal distribution 
N(0, (Θ = )&'). 
For the sake of clearness in network display, the simulation was conducted 
based on 2 tissues or conditions, 40 samples for each tissues or condition. 
The elementary network sparsity, the hub sparsity, and the network differ-
ence were set as 0.98, 0.70, and 0.20, respectively. We simulated 3 net-
works with 80, 160 and 300 genes, respectively. As we have described, 
we used the BIC and the grid search to find the tuning parameters and best 
model. 
We first evaluated how well JRmGRN could find hub genes and their 
edges. Figure 2 shows the simulated ER gene network and the estimated 
gene network with 80 genes. There were 5 hubs genes that had an average 
of 30 edges. JRmGRN successfully identified 4 hub genes, and 95 out of 
119 original edges of these 4 hub genes. Only one hub gene (76), which 
had only 26 edges, was not identified by JRmGRN. Two genes, 36 and 51, 
as shown in Figure 2B, were not hub genes but were identified as hub 
genes by JRmGRN. We found that the number of edges of these two genes 
were 15 and 14, respectively. These numbers were slightly higher than  
other non-hub genes and deviated toward 30, the average number of edges 
from 5 hub genes. These results manifested the usefulness of JRmGRN in 
identifying true hub genes and their corresponding edges through network 
reconstruction. 
We then compared JRmGRN with several other methods. The precision 
recall curve was constructed based on the edges instead of hub genes in 
the network since GLASSO and JGL do not model hub genes explicitly 
(Figure 3). Additional evaluations of the performance of JRmGRN under  

Figure 4. The simulated Barabási-Albert gene network (A) and the estimated gene network 

(B). In both Figure 4A and 4B, the blue edges, the red edges, and the green edges represent 

the edges from Tissues1-specific edges, Tissue2-specific edges, and common edges from 

both tissues, respectively. The hub genes are highlighted in red in B. 
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different network settings with varying sparsity and similarity were shown 
in Supplementary File 1 (S4). The results clearly showed that our method, 
JRmGRN, performed the best in all circumstances. JRmGRN jointly mod-
eled multiple networks simultaneously so that the common network could 
be constructed more accurately by using data sets from multiple tis-
sues/conditions, which resulted in more accurate tissue/condition-specific 
networks. The comparison of JRmGRN and other methods in identifying 
tissue/condition-specific edges were shown in Supplementary File 1 (S5). 
Hub genes were explicitly modeled by JRmGRN and HGLASSO, and the 
comparison of the capability to identify true hub genes were shown in 
Supplementary File 1 (S6). All results manifested that JRmGRN had 
higher precision, and comparable recalls with other methods. 

3.1.2 Results on Barabási-Albert (BA)-based network 

BA-based network is used in (Danaher, et al., 2014) to evaluate the per-
formance of network inferring algorithm. A big network consisted of a 
number of disconnected BA subnetwork. There are no explicit hub genes 
in these subnetworks; genes that have more high connectivity were con-
sidered hub genes. For a given number of tissues or conditions (K), genes 
(p), samples (n=, k = 1,⋯ , K), we used the following procedures to gen-
erate a BA-based network using corresponding gene expression data. (1) 
We divided p genes into m groups evenly. (2) For each of first (1-	  δ)m 
gene groups, the BA-based subnetwork was the same across all K tissues 
or conditions and were generated with the function “barabasi.game” from 
the R “igraph” package. (3) For each of the rest δm gene groups, the BA-
based subnetwork was different for each tissue or condition and were gen-
erated separately. (4) For each edge in the network, we set the correspond-
ing element in the precision matrix of the kth tissue/condtion,	  Θ(=), to be 
a random number in −0.25, −0.75 ∪ [0.25,0.75]. (5) We generated the 
gene expression of n= samples for the kth tissue or condition with n= in-
dependent multivariate normal distribution N(0, (Θ = )&').   
The simulation was conducted based on 2 tissues or conditions, 40 sam-
ples for each tissues or conditions, and 8 subnetworks. The elementary 
network sparsity and hub sparsity were not explicitly implemented. We 
varied the parameters in the function “barabasi.game” from R “igraph” 
package to generate BA-based networks with desired elementary network 
sparsity (1 − α = 0.98). We set 7 out of 8 subnetworks to be the same 
across 2 tissues or conditions, and one subnetwork to be different. We 
simulated 3 networks with 80, 160 and 320 genes, respectively.  
. The simulated BA gene network (Figure 4A) and the estimated gene net-
work (Figure 4B) with 80 genes. JRmGRN successfully identified 191 
edges with a true positive rate of 0.702, and falsely identified 290 edges  

with a false positive rate of 0.048. JRmGRN identified 17 genes as hub 
genes. The average number of edges connected to these 17 genes in the 
true network was 5.76, and the average number of edges connected to the 
rest 63 genes in true network are 3.05. Therefore, the hub genes identified 
by JRmGRN had much higher degree of connectivity. As pointed out in 
(Han, et al., 2004; van den Heuvel and Sporns, 2013), the genes with 
higher degrees of connectivity may be more important in biological devel-
opment, which validates and manifests the usefulness of JRmGRN. 
The comparison of PR curves of JRmGRN and other methods are shown 
in Figure 5. When the number of genes were 80 or less, JRmGRN and JGL 
had similar performance, and they were better than the other two methods. 
As the number of genes increased, the performance of JRmGRN surpassed 
that of JGL and became the best. 

3.2   Results from real RNA-seq data of Arabidopsis thaliana 
The Arabidopsis gene expression data used in this study are RNA-seq data 
generated from cotyledon tissue of Arabidopsis seedlings under two light 
regime conditions: low and high red:far-red (R:FR). There are 12 samples 
in each condition, with 2 replicates for each time point of 0.5, 1, 2, 3, 4 
and 7 h. The SRA format data were downloaded through the accession 
identifier “GSE59722” in the NCBI Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm. nih.gov/geo/). We first used the Rsubread software 
package (Liao, et al., 2013) to transform the raw sequence reads to a ma-
trix of raw counts, and then used the edgeR quasi-likelihood pipeline 
(Robinson, et al., 2010) to obtain differentially expressed genes (DEGs) 
following the procedure given by (Chen, et al., 2016). There are 321 light 
related DEGs, as shown in Supplementary File 2. The Blom transform 
method (Zwiener, et al., 2014) was used to transform the read counts data. 
The Blom transformation is a rank-based transformation, which back-
transforms the uniformly distributed ranks to a standard normal distribu-
tion, i.e. 

xGH���� = ϕ&'(
rankGT',…,B xGH − c

n − 2c + 1
) 

with c = 3/8 and ϕ is the standardized cumulative distribution function. 
The networks built based on the above method are shown in Figure 6.  The 
common network of both low and high R and FR conditions is represented 
by the green edges with the 15 common hub genes being highlighted in 
yellow.  All of these common hub genes had a connectivity > 172, which 
is at least 5 times larger than that of any the non-hub gene. Among these 
15 hub genes, 8 were up-regulated in overall trends (BZO2H3, CCL, 
TCP11, PLPC5, AT1G62310, AT3G15570, NAC102 and AT3G45260) 
light-responsive. PLPC encodes a blue light receptor protein while BLH10 

Figure 5. Precision-Recall curves of JRmGRN and three other existing methods including graphical lasso (GLASSO), joint graphical lasso (JGL), and graphical lasso with hubs (HGLASSO) 

on the Barabási-Albert-based network
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while 7 were down regulated in overall trends (BLH10, ELIP1, PD1, 
PEX11B, PLIM2a, WAV2, and POP12) upon low and high R and FR 
treatments. At least 8 genes, including PLPC, BEL10, CCL, PD1, ELIP1, 
PEX11B, AT3G15570, POP1 and WAV2, were previously reported to be 
encodes a protein that interacts with PLPC (PAS/LOV PROTEIN). Their 
interaction diminishes by blue light (Ogura, et al., 2008). PD1 encodes a 
plastid-localized arogenate dehydratase required for blue light-induced 
production of phenylalanine (Warpeha, et al., 2007) while PEX11B is in-
volved in light response (Hu and Desai, 2008). ELIP1 is light-responsive 
(Rus Alvarez-Canterbury, et al., 2014) and plays an essential role in the 
assembly or stabilization of photosynthetic pigment-protein complexes 
(Beck, et al., 2017). CCL’s transcripts are differentially regulated at the 
level of mRNA stability at different times of day controlled by a circadian 
clock (Lidder, et al., 2005). AT3G15570 encodes a phototropic-responsive 
NPH3 family protein. POP1 encodes a member of the NAP subfamily of 
ABC transporters whose expression pattern is regulated by light and su-
crose (Marin, et al., 2006). WAV2 negatively regulates root bending when 
roots alter their growth direction in response to environmental stimuli such 
as light (Mochizuki, et al., 2005). 

4   Discussion 
The results from synthetic data, which were generated with ER-based 

network or the BA-based network, clearly showed that JRmGRN outper-
formed several other methods, including GLASSO, HGLASSO, and JGL 
for the reconstructing GRNs. Since common hub genes were explicitly 
modeled in the ER-based network, it was not surprised to see that 
JRmGRN had a higher accuracy in identifying common hub genes and  
 
had the largest area under the PR curves when the synthetic data set from 
the ER-based network was used in the evaluation.  In contrary, common 
hub genes were not clearly modeled though genes that had high connec-
tivity can be seen in the BA-based network. When the synthetic data set 
from the BA-based network was used in the evaluation, JRmGRN and 
JGL had similar performance as a small number of genes was included, 
whereas JRmGRN had a much better performance than JGL as a large 
number of genes was used.  
When JRmGRN was used to construct gene networks using real gene ex-
pression data set generated from Arabidopsis cotyledons under low to high 
red:far-red light regime conditions, it successfully built three networks and 
identified 15 common hub genes, and at least 9 of them were explicitly 
documented in existing literature for their involvement in light-response 
or related biological processes. Some of them, like ELIP1, PLPC and 
BLH10, play important roles in light perception and harvest in photosyn-
thesis. In addition to these common hub genes, some other genes like  

Figure 6. The gene regulatory networks built with JRmGRN. The blue and green edges represent the network built with the data from low red:far light regime condition while the red and 

green edges represent the network built with the data from high red:far light regime condition. The green edges represent common edges of the two networks.
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bHLH071, a blue-light regulated gene (Jiao, et al., 2003), and RSM1, a 
light-responsive gene (Soitamo, et al., 2008), are identified to be hubs in 
low and high R:FR- specific networks, respectively, indicating the useful-
ness of the method in building two or more condition-specific networks 
and a common network across all conditions. We also implemented other 
three methods to the real data set from Arabidopsis under far-red light and 
shade condition. We found JRmGRN and JGL identified much more num-
bers of common edges and less number of condition-specific edges than 
GLASSO and HGLASSO. HGLASSO identified 37 hub genes, 14 red:far-
red-specific and 23 shade-specific hub genes. Of these 37 hub genes, 
TCP11, PD1 PLIM2A and AT3G45260 are among the 15 hub genes of 
JRmGRN. Among the 15 hub genes identified by JRmGRN, 9 are in-
volved in light response and considered to be positive, whereas among 37 
hub genes identified by HGLASSO, 8 genes are involved in light response 
and considered to be positive (Supplementary File 1 (S8, S9)).  It appears 
that JRmGRN is more efficient in recognizing positive hubs.  
In the model of JRmGRN, four tuning parameters were used and a grid 
search was employed to find the optimal turning parameters, resulting in 
the optimal model based on the BIC like criterion. For a fixed set of tuning 
parameters, an efficient ADMM algorithm was derived and implemented 
to enable a fast estimation of precision matrices. Theoretical properties of 
the penalized likelihood function were also investigated and used to re-
duce the search space of tuning parameters. For a fixed set of tuning pa-
rameters, using a Mac desktop computer with 2.2 GHz Intel Core i7 pro-
cessor and 16 GB 1600 MHz DDR3 memory, the average running times 
for estimating the precision matrices were about 30 seconds for 100 genes, 
2.5 minutes for 200 genes, 6 minutes for 300 genes, 25 minutes for 500 
genes, and 3.7 hours for 1000 genes, respectively. Therefore, implemen-
tation of JRmGRN allows us to reconstruct GRNs for 500 genes within a 
reasonable time frame by an ordinary desktop computer. In future, we will 
explore two possible strategies to reduce the computational burden so that 
JRmGRN can be used for a large number of genes. First, instead of using 
the grid search, we will investigate how the heuristic search algorithms, 
such the genetic algorithm (Grefenstette, 2013) and taboo (Glover, 1989; 
Glover, 1990) perform. Secondly, we will find out how the domain 
knowledge on gene networks and differentially expressed genes can be 
used to reduce the search space of tuning parameters.  
In the current model of JRmGRN, it is assumed that all hub genes are 
shared across different tissues or conditions. In many situations, hub genes 
that are specific to an individual network also exist. One of our future 
works is to extend the current model to incorporate both common and 
unique hub genes. This can be done by adding an additional symmetric 
matrix to the decomposition of the precision matrix. The corresponding 
penalized log likelihood function and an efficient algorithm will be devel-
oped accordingly.  

5   Conclusion 
We proposed JRmGRN as a novel method for joint construction of GRNs 
using gene expression data from either several tissues or environmental 
conditions. The model was based on a convex penalized log likelihood 
function that not only took gene network sparsity and similarity into ac-
count but also explicitly modeled common hub genes across multiple 
GRNs, leading to multiple networks with common network moieties being 
highlighted. The resulting networks can significantly advance our under-
standing of genetic regulation of various biological processes. Reconstruc-
tion of both common moieties and each individual network corresponding 
to a tissue or a condition was improved by borrowing information of com-

mon hub genes and regulatory relationships from other individual net-
works.  Therefore, JRmGRN can potentially generate more accurate gene 
networks, as manifested by the precision recall curves.   
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